Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Placenta ; 147: 12-20, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38278000

ABSTRACT

INTRODUCTION: Placental phospholipid synthesis is critical for the expansion of the placental exchange surface area and for production of signaling molecules. Despite their importance, it is not yet established which enzymes involved in the de novo synthesis and remodeling of placental phospholipids are expressed and active in the human placenta. METHODS: We identified phospholipid synthesis enzymes by immunoblotting in placental homogenates and immunofluorescence in placenta tissue sections. Primary human trophoblast (PHT) cells from term healthy placentas (n = 10) were cultured and exposed to 13C labeled fatty acids (16:0, 18:1 and 18:2 n-6, 22:6 n-3) for 2 and 24 h. Three phospholipid classes; phosphatidic acid, phosphatidylcholine, and lysophosphatidylcholine containing 13C fatty acids were quantified by Liquid Chromatography with tandem mass spectrometry (LC/MS-MS). RESULTS: Acyl transferase and phospholipase enzymes were detected in human placenta homogenate and primarily expressed in the syncytiotrophoblast. Three representative 13C fatty acids (16:0, 18:1 and 18:2 n-6) were incorporated rapidly into phosphatidic acid in trophoblasts, but 13C labeled docosahexaenoic acid (DHA; 22:6 n-3) incorporation was not detected. 13C DHA was incorporated into phosphatidylcholine. Lysophosphatidylcholine containing all four 13C labeled fatty acids were found in high abundance. CONCLUSIONS: Phospholipid synthesis and remodeling enzymes are present in the syncytiotrophoblast. 13C labeled fatty acids were rapidly incorporated into cellular phospholipids. 13C DHA was incorporated into phospholipids through the remodeling pathway rather than by de novo synthesis. These understudied pathways are highly active and critical for structure and function of the placenta.


Subject(s)
Phospholipids , Placenta , Humans , Pregnancy , Female , Placenta/metabolism , Phospholipids/metabolism , Lysophosphatidylcholines/metabolism , Fatty Acids/metabolism , Phosphatidylcholines/metabolism
2.
Eur J Epidemiol ; 38(9): 1009-1018, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37642793

ABSTRACT

The Pregnancy Research on Inflammation, Nutrition, & City Environment: Systematic Analyses Study (PRINCESA) cohort was set up to evaluate associations between air pollution and birth outcomes among pregnant persons in Mexico City. Specifically, the study was designed to improve air pollution exposure assessment and elucidate biological mechanisms underlying associations between maternal exposures and adverse pregnancy outcomes. Pregnant persons (all women) (N = 935) between ages 18-45 who lived and/or worked in metropolitan Mexico City, Mexico, from 2009 to 2015 and liveborn singleton infants (N = 815) of participants who completed follow-up were enrolled in the cohort. We followed participants monthly from enrollment to delivery and the following categories of data were obtained: demographic, medical and obstetric history, geo-referenced data, repeated measures on daily activity patterns, reported food intake, anthropometric, clinical and obstetric data, 20 serum and 20 cervicovaginal cytokines, and lower reproductive tract infection. Repeated ultrasound measures of fetal parameters and infant birth data are also included in the study's database. In addition, PRINCESA investigators calculated air pollution exposure measures for six pollutants measured by the Mexico City Atmospheric Monitoring System (SIMAT). These estimates utilize participants' addresses to account for spatial variation in exposure (nearest monitor, inverse distance weighting, and kriging) and are available daily during pregnancy for participants. To date, associations between environmental and nutritional impacts on maternal and child health outcomes have been evaluated. PRINCESA has a comprehensive database of maternal and infant data and biological samples and offers collaboration opportunities to study associations between environmental and other factors, including nutrition and pregnancy outcomes.


Subject(s)
Air Pollution , Inflammation , Child , Infant , Pregnancy , Humans , Female , Inflammation/epidemiology , Nutritional Status , Activities of Daily Living , Air Pollution/adverse effects , Anthropometry
3.
Breast Cancer Res ; 25(1): 99, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37608351

ABSTRACT

BACKGROUND: Obesity increases breast cancer risk and breast cancer-specific mortality, particularly for people with estrogen receptor (ER)-positive tumors. Body mass index (BMI) is used to define obesity, but it may not be the best predictor of breast cancer risk or prognosis on an individual level. Adult weight gain is an independent indicator of breast cancer risk. Our previous work described a murine model of obesity, ER-positive breast cancer, and weight gain and identified fibroblast growth factor receptor (FGFR) as a potential driver of tumor progression. During adipose tissue expansion, the FGF1 ligand is produced by hypertrophic adipocytes as a stimulus to stromal preadipocytes that proliferate and differentiate to provide additional lipid storage capacity. In breast adipose tissue, FGF1 production may stimulate cancer cell proliferation and tumor progression. METHODS: We explored the effects of FGF1 on ER-positive endocrine-sensitive and resistant breast cancer and compared that to the effects of the canonical ER ligand, estradiol. We used untargeted proteomics, specific immunoblot assays, gene expression profiling, and functional metabolic assessments of breast cancer cells. The results were validated in tumors from obese mice and breast cancer datasets from women with obesity. RESULTS: FGF1 stimulated ER phosphorylation independently of estradiol in cells that grow in obese female mice after estrogen deprivation treatment. Phospho- and total proteomic, genomic, and functional analyses of endocrine-sensitive and resistant breast cancer cells show that FGF1 promoted a cellular phenotype characterized by glycolytic metabolism. In endocrine-sensitive but not endocrine-resistant breast cancer cells, mitochondrial metabolism was also regulated by FGF1. Comparison of gene expression profiles indicated that tumors from women with obesity shared hallmarks with endocrine-resistant breast cancer cells. CONCLUSIONS: Collectively, our data suggest that one mechanism by which obesity and weight gain promote breast cancer progression is through estrogen-independent ER activation and cancer cell metabolic reprogramming, partly driven by FGF/FGFR. The first-line treatment for many patients with ER-positive breast cancer is inhibition of estrogen synthesis using aromatase inhibitors. In women with obesity who are experiencing weight gain, locally produced FGF1 may activate ER to promote cancer cell metabolic reprogramming and tumor progression independently of estrogen.


Subject(s)
Breast Neoplasms , Fibroblast Growth Factor 1 , Receptors, Estrogen , Animals , Female , Mice , Estradiol , Estrogens , Fibroblast Growth Factor 1/metabolism , Ligands , Obesity/complications , Proteomics , Receptors, Estrogen/genetics , Weight Gain , Breast Neoplasms/metabolism
4.
Toxics ; 11(5)2023 May 03.
Article in English | MEDLINE | ID: mdl-37235239

ABSTRACT

High blood pressure (BP) is a risk factor for hypertensive disease during pregnancy. Exposure to multiple toxic air pollutants can affect BP in pregnancy but has been rarely studied. We evaluated trimester-specific associations between air pollution exposure and systolic (SBP) and diastolic BP (DBP). Ozone (O3), sulfur dioxide (SO2), carbon monoxide (CO), nitrogen dioxide (NO2), and particulate matter less than 10 and 2.5 µm in aerodynamic diameter (PM10, PM2.5) in the Pregnancy Research on Inflammation, Nutrition, & City Environment: Systematic Analyses (PRINCESA) study. Multipollutant generalized linear regression models with each pollutant and O3 were fit. Due to nonlinear pollution/BP associations, results are presented for "below the median" or "above the median", where the beta estimate is the change in BP at a pollutant's median versus BP at the pollutant's minimum or maximum, respectively. Associations varied across trimesters and pollutants, and deleterious associations (higher blood pressure with higher pollution) were found only at pollutant values below the median: for SBP with NO2 in the second and third trimesters, and PM2.5 during the third trimester, and for DBP, PM2.5, and NO2 in the second and third trimesters. Findings suggest that minimizing prenatal exposure to air pollution may reduce the risks of changes in BP.

5.
J Natl Cancer Inst Monogr ; 2023(61): 12-29, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37139973

ABSTRACT

The obesity pandemic currently affects more than 70 million Americans and more than 650 million individuals worldwide. In addition to increasing susceptibility to pathogenic infections (eg, SARS-CoV-2), obesity promotes the development of many cancer subtypes and increases mortality rates in most cases. We and others have demonstrated that, in the context of B-cell acute lymphoblastic leukemia (B-ALL), adipocytes promote multidrug chemoresistance. Furthermore, others have demonstrated that B-ALL cells exposed to the adipocyte secretome alter their metabolic states to circumvent chemotherapy-mediated cytotoxicity. To better understand how adipocytes impact the function of human B-ALL cells, we used a multi-omic RNA-sequencing (single-cell and bulk transcriptomic) and mass spectroscopy (metabolomic and proteomic) approaches to define adipocyte-induced changes in normal and malignant B cells. These analyses revealed that the adipocyte secretome directly modulates programs in human B-ALL cells associated with metabolism, protection from oxidative stress, increased survival, B-cell development, and drivers of chemoresistance. Single-cell RNA sequencing analysis of mice on low- and high-fat diets revealed that obesity suppresses an immunologically active B-cell subpopulation and that the loss of this transcriptomic signature in patients with B-ALL is associated with poor survival outcomes. Analyses of sera and plasma samples from healthy donors and those with B-ALL revealed that obesity is associated with higher circulating levels of immunoglobulin-associated proteins, which support observations in obese mice of altered immunological homeostasis. In all, our multi-omics approach increases our understanding of pathways that may promote chemoresistance in human B-ALL and highlight a novel B-cell-specific signature in patients associated with survival outcomes.


Subject(s)
COVID-19 , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Animals , Mice , Proteomics , SARS-CoV-2 , Obesity/complications , Obesity/metabolism
6.
PLoS Pathog ; 18(8): e1010386, 2022 08.
Article in English | MEDLINE | ID: mdl-35969617

ABSTRACT

Zika virus (ZIKV) infection in pregnancy can produce catastrophic teratogenic damage to the developing fetus including microcephaly and congenital Zika syndrome (CZS). We previously described fetal CNS pathology occurring by three weeks post-ZIKV inoculation in Olive baboons at mid-gestation, including neuroinflammation, loss of radial glia (RG), RG fibers, neuroprogenitor cells (NPCs) resulting in disrupted NPC migration. In the present study, we explored fetal brain pathologies at term gestation resulting from ZIKV exposure during either first or second trimester in the Olive baboon. In all dams, vRNA in whole blood resolved after 7 days post inoculation (dpi). One first trimester infected dam aborted at 5 dpi. All dams developed IgM and IgG response to ZIKV with ZIKV IgG detected in fetal serum. Placental pathology and inflammation were observed including disruption of syncytiotrophoblast layers, delayed villous maturation, partially or fully thrombosed vessels, calcium mineralization and fibrin deposits. In the uterus, ZIKV was detected in ¾ first trimester but not in second trimester infected dams. While ZIKV was not detected in any fetal tissue at term, all fetuses exhibited varying degrees of neuropathology. Fetal brains from ZIKV inoculated dams exhibited a range of gross brain pathologies including irregularities of the major gyri and sulci of the cerebral cortex and cerebellar pathology. Frontal cortices of ZIKV fetuses showed a general disorganization of the six-layered cortex with degree of disorganization varying among the fetuses from the two groups. Frontal cortices from ZIKV inoculation in the first but not second trimester exhibited increased microglia, and in both trimester ZIKV inoculation, increased astrocyte numbers (white matter). In the cerebellum, increased microglia were observed in fetuses from both first and second trimester inoculation. In first trimester ZIKV inoculation, decreased oligodendrocyte precursor cell populations were observed in fetal cerebellar white matter. In general, our observations are in accordance with those described in human ZIKV infected fetuses.


Subject(s)
Pregnancy Complications, Infectious , Zika Virus Infection , Zika Virus , Animals , Female , Fetus , Humans , Immunoglobulin G , Papio anubis , Placenta , Pregnancy
7.
Article in English | MEDLINE | ID: mdl-36935840

ABSTRACT

Maternal consumption of a high-fat, Western-style diet (WD) disrupts the maternal/infant microbiome and contributes to developmental programming of the immune system and nonalcoholic fatty liver disease (NAFLD) in the offspring. Epigenetic changes, including non-coding miRNAs in the fetus and/or placenta may also underlie this risk. We previously showed that obese nonhuman primates fed a WD during pregnancy results in the loss of beneficial maternal gut microbes and dysregulation of cellular metabolism and mitochondrial dysfunction in the fetal liver, leading to a perturbed postnatal immune response with accelerated NAFLD in juvenile offspring. Here, we investigated associations between WD-induced maternal metabolic and microbiome changes, in the absence of obesity, and miRNA and gene expression changes in the placenta and fetal liver. After ~8-11 months of WD feeding, dams were similar in body weight but exhibited mild, systemic inflammation (elevated CRP and neutrophil count) and dyslipidemia (increased triglycerides and cholesterol) compared with dams fed a control diet. The maternal gut microbiome was mainly comprised of Lactobacillales and Clostridiales, with significantly decreased alpha diversity (P = 0.0163) in WD-fed dams but no community-wide differences (P = 0.26). At 0.9 gestation, mRNA expression of IL6 and TNF in maternal WD (mWD) exposed placentas trended higher, while increased triglycerides, expression of pro-inflammatory CCR2, and histological evidence for fibrosis were found in mWD-exposed fetal livers. In the mWD-exposed fetus, hepatic expression levels of miR-204-5p and miR-145-3p were significantly downregulated, whereas in mWD-exposed placentas, miR-182-5p and miR-183-5p were significantly decreased. Notably, miR-1285-3p expression in the liver and miR-183-5p in the placenta were significantly associated with inflammation and lipid synthesis pathway genes, respectively. Blautia and Ruminococcus were significantly associated with miR-122-5p in liver, while Coriobacteriaceae and Prevotellaceae were strongly associated with miR-1285-3p in the placenta; both miRNAs are implicated in pathways mediating postnatal growth and obesity. Our findings demonstrate that mWD shifts the maternal microbiome, lipid metabolism, and inflammation prior to obesity and are associated with epigenetic changes in the placenta and fetal liver. These changes may underlie inflammation, oxidative stress, and fibrosis patterns that drive NAFLD and metabolic disease risk in the next generation.

8.
Mol Cell Endocrinol ; 532: 111319, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33989714

ABSTRACT

AIMS: Infants born to women with Type 2 Diabetes Mellitus (T2DM) are at risk of being born large for gestational age due to excess fetal fat accretion. Placental nutrient transport determines fetal nutrient availability, impacting fetal growth. The aims of the study were to evaluate the effect of T2DM on placental insulin signaling, placental nutrient transporters and neonatal adiposity. METHODS: Placentas were collected from BMI-matched normoglycemic controls (NGT, n = 9) and T2DM (n = 9) women. Syncytiotrophoblast microvillous (MVM) and basal (BM) plasma membranes were isolated. Expression of glucose (GLUT1, -4), fatty acid (FATP2, -4, -6, FAT/CD36), amino acid (SNAT1, -2, -4, LAT1, -2) transporters, insulin signaling, and System A transporter activity was determined. Neonatal fat mass (%) was measured in a subset of neonates born to T2DM women. RESULTS: GLUT1 protein expression was increased (p = 0.001) and GLUT4 decreased (p = 0.006) in BM from T2DM. MVM FATP6 expression was increased (p = 0.02) and correlated with birth weight in both T2DM and NGT groups (r = 0.65, p = 0.02). BM FATP6 expression was increased (p = 0.01) in T2DM. In MVM of T2DM placentas, SNAT1 expression was increased (p = 0.05) and correlated with birth weight (r = 0.84, p = 0.004); SNAT2 was increased (p = 0.01), however System A transporter activity was not different between groups. MVM LAT1 expression was increased (p = 0.01) in T2DM and correlated with birth weight (r = 0.59, p = 0.04) and neonatal fat mass (r = 0.76, p = 0.06). CONCLUSION: In pregnancies complicated by T2DM placental protein expression of transporters for glucose, amino acids and fatty acids is increased, which may contribute to increased fetal growth and neonatal adiposity.


Subject(s)
Adiposity , Birth Weight , Carrier Proteins/biosynthesis , Diabetes Mellitus, Type 2/metabolism , Gene Expression Regulation , Placenta/metabolism , Pregnancy Proteins/biosynthesis , Pregnancy in Diabetics/metabolism , Adult , Female , Humans , Infant, Newborn , Male , Pregnancy
9.
Article in English | MEDLINE | ID: mdl-33810264

ABSTRACT

Preterm birth (PTB), defined as birth before 37 completed weeks of gestation, is a major cause of infant morbidity and mortality. Inflammation is an important component in the physiopathologic pathway leading to PTB but results from cross-sectional studies on associations between inflammation, as measured by cytokines, and PTB are inconsistent. Timing of cytokine measurement during pregnancy varies between studies and may contribute to inconsistent findings. We investigated the effects of timing on associations between 16 cervico-vaginal cytokines (Eotaxin, IL-10, IL-12p40, IL-17, IL-1RA, sIL-2rα, IL-1a, IL-1ß, IL-2, IL-6, IP-10, MCP-1, MIP-1α, MIP-1ß, TNFα, and VEGF) and PTB among 90 women throughout pregnancy. We used logistic regression to compare associations between concentrations of cervico-vaginal cytokines from periods in pregnancy and PTB. Trimester 1 cytokines had the strongest positive associations with PTB; for example, OR = 1.76 (95% confidence interval: 1.28, 2.42) for IL-6. Second and third trimester associations were weaker but largely positive. IL-1α was the only cytokine with a negative association (trimesters 2, 3 and overall pregnancy). Strong first trimester associations between cytokines and PTB suggest that measuring cytokines early in pregnancy may hold promise for early identification of PTB risk. Variations in cytokine measurement during pregnancy may contribute to inconsistencies among studies.


Subject(s)
Premature Birth , Cohort Studies , Cross-Sectional Studies , Female , Humans , Infant, Newborn , Inflammation , Pregnancy , Pregnancy Trimesters , Premature Birth/epidemiology
10.
J Nutr ; 151(3): 556-569, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33382407

ABSTRACT

BACKGROUND: Preconceptional maternal small-quantity lipid-based nutrient supplementation (SQLNS) improved intrauterine linear growth in low-resource countries as demonstrated by the Women First Preconception Maternal Nutrition Trial (WF). Fetal growth is dependent on nutrient availability and regulated by insulin-like growth factor 1 (IGF-1) through changes in placental transfer capacity, mediated by the mechanistic target of rapamycin (mTOR) pathway. OBJECTIVES: Our objective was to evaluate the role of placental mTOR and IGF-1 signaling on fetal growth in women from 2 low-resource countries with high rates of stunting after they received preconceptional SQLNS. METHODS: We studied 48 women from preconception through delivery who were from Guatemala and Pakistan and received SQLNS or not, as part of the WF study. Placental samples were obtained at delivery (control, n = 24; SQLNS, n = 24). Placental protein or mRNA expression of eukaryotic translation initiation factor binding protein-1 (4E-BP1), ribosomal protein S6 (rpS6), AMP-activated protein kinase α (AMPKA), IGF-1, insulin-like growth factor receptor (IGF-1R), and pregnancy associated plasma protein (PAPP)-A, and DNA methylation of the IGF1 promoter were determined. Maternal serum IGF-1, insulin-like growth factor binding protein (IGFBP)-3, IGFBP-4, IGFBP-5, PAPP-A, PAPP-A2, and zinc were measured. RESULTS: Mean ± SEM maternal prepregnancy BMI differed between participants in Guatemala (26.5 ± 1.3) and Pakistan (19.8 ± 0.7) (P < 0.001). In Pakistani participants, SQLNS increased the placental rpS6(T37/46):rpS6 ratio (1.5-fold) and decreased the AMPKA(T172):AMPKA ratio. Placental IGF1 mRNA expression was positively correlated with birth length and birth weight z-scores. Placental PAPP-A (30-fold) and maternal serum zinc (1.2-fold) increased with SQLNS. In Guatemalan participants SQLNS did not influence placental mTOR signaling. Placental IGF-1R protein expression was positively associated with birth length and birth weight z-scores. SQLNS increased placental PAPP-A (40-fold) and maternal serum IGFBP-4 (1.6-fold). CONCLUSIONS: In Pakistani pregnant women with poor nutritional status, preconceptional SQLNS activated placental mTOR and IGF-1 signaling and was associated with improved fetal growth. In contrast, in Guatemalan women SQLNS did not activate placental nutrient-sensing pathways. In populations experiencing childhood stunting, preconceptional SQLNS improves placental function and fetal growth only in the context of poor maternal nutrition. This trial was registered at clinicaltrials.gov as NCT01883193.


Subject(s)
Dietary Supplements , Insulin-Like Growth Factor I/metabolism , Lipids/chemistry , Placenta/metabolism , Preconception Care , TOR Serine-Threonine Kinases/metabolism , Developing Countries , Female , Gene Expression Regulation/drug effects , Humans , Insulin-Like Growth Factor I/genetics , Placenta/drug effects , Pregnancy , TOR Serine-Threonine Kinases/genetics
11.
Reprod Toxicol ; 93: 191-198, 2020 04.
Article in English | MEDLINE | ID: mdl-32142752

ABSTRACT

Polybrominated diphenyl ethers (PBDEs) are flame retardant compounds detected in human placenta and linked to adverse pregnancy outcomes. Impaired trophoblast migration and invasion during early pregnancy have been implicated as potential mechanisms of pregnancy disorders. The present study investigated the effect of BDE-47, a prevalent PBDE congener, on cell migration, invasion, and matrix metalloproteinase (MMP) expression in a human first trimester extravillous trophoblast cell line, HTR-8/SVneo. BDE-47 stimulated cell migration in HTR-SV/neo cells while decreasing invasion of cells into Matrigel. In addition, BDE-47 led to differential expression of MMP-1, -2, -3, and -9 at protein and mRNA levels. In summary, BDE-47 differentially regulated cellular migration and invasion with divergent changes in MMP expression in trophoblasts. Because proper regulation of trophoblast migration and invasion is critical for placental development and function, further research is warranted to determine if exposure to PBDEs disrupts trophoblast functions with increased risk for adverse pregnancy outcomes.


Subject(s)
Cell Movement/drug effects , Environmental Pollutants/toxicity , Flame Retardants/toxicity , Halogenated Diphenyl Ethers/toxicity , Pregnancy Trimester, First , Trophoblasts/drug effects , Cell Line , Female , Humans , Matrix Metalloproteinases/genetics , Matrix Metalloproteinases/metabolism , Pregnancy , Trophoblasts/physiology , Wound Healing/drug effects
12.
Matern Child Nutr ; 16(3): e12972, 2020 07.
Article in English | MEDLINE | ID: mdl-32037674

ABSTRACT

Although the isolated effects of several specific nutrients have been examined, little is known about the relationship between overall maternal diet during pregnancy and fetal development and growth. This study evaluates the association between maternal diet and low birthweight (LBW) in 660 pregnant women from the Pregnancy Research on Inflammation, Nutrition,& City Environment: Systematic Analyses (PRINCESA) cohort in Mexico City. Using prior day dietary intake reported at multiple prenatal visits, diet was assessed prospectively using a priori (Maternal Diet Quality Score [MDQS]) and a posteriori (dietary patterns extracted by factor analysis) approaches. The association between maternal diet and LBW was investigated by logistic regression, controlling for confounders. Adherence to recommended guidelines (higher MDQS) was associated with a reduced risk of LBW (OR, 0.22; 95% confidence interval [0.06, 0.75], P < .05, N = 49) compared with the lowest adherence category (reference group), controlling for maternal age, education, height, marital status, pre-pregnancy body mass index, parity, energy intake, gestational weight gain, and preterm versus term birth; a posteriori dietary patterns were not associated with LBW risk. Higher adherence to MDQS was associated with a lower risk of having an LBW baby in this sample. Our results support the role of advocating a healthy overall diet, versus individual foods or nutrients, in preventing LBW.


Subject(s)
Diet/methods , Fetal Development , Infant, Low Birth Weight , Maternal Nutritional Physiological Phenomena , Nutrition Policy , Adult , Cohort Studies , Female , Humans , Infant, Newborn , Mexico , Pregnancy , Prospective Studies , Young Adult
13.
Am J Perinatol ; 37(6): 613-620, 2020 05.
Article in English | MEDLINE | ID: mdl-30978743

ABSTRACT

OBJECTIVE: This study aimed to describe characteristics of cervicovaginal cytokines obtained during pregnancy from women who subsequently delivered at term. STUDY DESIGN: We used repeated measures of 20 cervicovaginal cytokines, collected on average on a monthly basis, from the second to the ninth month of gestation among 181 term pregnancies in the Mexico City Pregnancy Research on Inflammation, Nutrition, & City Environment: Systematic Analyses cohort (2009-2014). Cytokines were quantified using multiplex assay. RESULTS: Cytokine distributions differed more between than within cytokines. Across trimesters, cytokines interleukin (IL)-1Ra, IL-1α, and IL-8 consistently had high concentrations compared with other measured cytokines. Cytokine intraclass correlation coefficients ranged from 0.41 to 0.82. Spearman's correlation coefficients among cytokine pairs varied but correlation directions were stable; 95.3% of the 190 correlation pairs remained either negative or positive across trimesters. Mean longitudinal patterns of log-transformed cytokines from Tobit regression varied across but less within cytokines. CONCLUSION: Although mean concentrations of cervicovaginal cytokines among term pregnancies were high, they were largely stable over time. The high cytokine concentrations corroborate that pregnancy is associated with an active inflammatory state. These characterizations may serve as a baseline for comparison to other obstetric outcomes, which may be helpful in understanding deviations from normal gestational inflammation.


Subject(s)
Cervix Uteri/chemistry , Cytokines/analysis , Inflammation/immunology , Pregnancy/immunology , Vagina/chemistry , Adult , Body Mass Index , Female , Humans , Pregnancy Trimesters/immunology , Reference Values , Young Adult
14.
Clin Sci (Lond) ; 134(1): 53-70, 2020 01 17.
Article in English | MEDLINE | ID: mdl-31825077

ABSTRACT

Intrauterine growth restriction (IUGR) increases the risk for perinatal complications and metabolic and cardiovascular disease later in life. The syncytiotrophoblast (ST) is the transporting epithelium of the human placenta, and decreased expression of amino acid transporter isoforms in the ST plasma membranes is believed to contribute to IUGR. Placental mechanistic target of rapamycin Complex 2 (mTORC2) signaling is inhibited in IUGR and regulates the trafficking of key amino acid transporter (AAT) isoforms to the ST plasma membrane; however, the molecular mechanisms are unknown. Cdc42 and Rac1 are Rho-GTPases that regulate actin-binding proteins, thereby modulating the structure and dynamics of the actin cytoskeleton. We hypothesized that inhibition of mTORC2 decreases AAT expression in the plasma membrane and amino acid uptake in primary human trophoblast (PHT) cells mediated by down-regulation of Cdc42 and Rac1. mTORC2, but not mTORC1, inhibition decreased the Cdc42 and Rac1 expression. Silencing of Cdc42 and Rac1 inhibited the activity of the System L and A transporters and markedly decreased the trafficking of LAT1 (System L isoform) and SNAT2 (System A isoform) to the plasma membrane. mTORC2 inhibition by silencing of rictor failed to decrease AAT following activation of Cdc42/Rac1. Placental Cdc42 and Rac1 protein expression was down-regulated in human IUGR and was positively correlated with placental mTORC2 signaling. In conclusion, mTORC2 regulates AAT trafficking in PHT cells by modulating Cdc42 and Rac1. Placental mTORC2 inhibition in human IUGR may contribute to decreased placental amino acid transfer and reduced fetal growth mediated by down-regulation of Cdc42 and Rac1.


Subject(s)
Mechanistic Target of Rapamycin Complex 2/metabolism , Trophoblasts/metabolism , cdc42 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/metabolism , Cell Membrane/metabolism , Female , Fetal Growth Retardation/metabolism , Humans , Placenta/metabolism , Pregnancy
15.
Am J Physiol Endocrinol Metab ; 317(6): E1037-E1049, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31573844

ABSTRACT

Pregnancies complicated by obesity and/or gestational diabetes (GDM) are associated with peripheral insulin resistance; however, the insulin responsiveness of the placenta in these pregnancy complications remains largely unknown. We tested the hypothesis that primary human trophoblast cells and placental villous explants will be insulin responsive, characterized by amino acid transport, Akt and Erk activity with maternal obesity, and/or GDM. We evaluated term placentas from women with normal body mass index (BMI) (normal; n = 15), obesity (OB; n = 11), normal BMI with GDM (N-GDM; n = 11), and obesity with GDM (OB-GDM; n = 11). In a subgroup, primary human trophoblast cells (PHT) were isolated, and in an independent subgroup placental villous explants were exposed to varying concentrations of insulin. Amino acid transport capacity and insulin signaling activity were determined. Insulin significantly increased amino acid transport activity to a similar degree in PHT cells isolated from normal (+21%), N-GDM (+38%), OB (+37%), and OB-GDM (+35%) pregnancies. Insulin increased Akt and Erk phosphorylation in PHT cells (3-fold) and in villous explants (2-fold) in all groups to a similar degree. In contrast to the peripheral maternal insulin resistance commonly associated with obesity and/or GDM, we found that the placenta is insulin sensitive in these pregnancy complications. We suggest that elevated maternal insulin levels in pregnancies complicated by obesity and/or GDM promote critical placental functions, including amino acid transport. Insulin-stimulated placental nutrient delivery may contribute to the increased risk of fetal overgrowth and adiposity in these pregnancies. Moreover, our findings may inform efforts to optimize insulin regimens for women with GDM.


Subject(s)
Amino Acids/drug effects , Diabetes, Gestational/metabolism , Hypoglycemic Agents/pharmacology , Insulin Resistance/physiology , Insulin/pharmacology , Obesity, Maternal/metabolism , Placenta/drug effects , Proto-Oncogene Proteins c-akt/drug effects , Adult , Amino Acids/metabolism , Chorionic Villi/drug effects , Chorionic Villi/metabolism , Extracellular Signal-Regulated MAP Kinases/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Fetal Macrosomia , Humans , Phosphorylation/drug effects , Placenta/metabolism , Pregnancy , Primary Cell Culture , Proto-Oncogene Proteins c-akt/metabolism , Trophoblasts/cytology , Trophoblasts/drug effects , Trophoblasts/metabolism
16.
Nutrition ; 65: 158-166, 2019 09.
Article in English | MEDLINE | ID: mdl-31132630

ABSTRACT

OBJECTIVE: The aims of this study were to characterize, among pregnant Mexican women, gestational weight gain (GWG) trajectories; assess associations of maternal dietary quality score (MDQS) with GWG during early-mid pregnancy, middle pregnancy, late pregnancy, and prolonged pregnancy; and evaluate the association between MDQS and adequacy of GWG, throughout pregnancy. We hypothesized that higher MDQS adherence is protective against insufficient or excessive GWG across pregnancy and that the association between MDQS adherence and GWG would vary by prepregnancy body mass index (BMI) category. METHODS: We analyzed data from 660 pregnant women participating in the PRINCESA (Pregnancy Research on Inflammation, Nutrition and City Environments: Systematic Analyses) cohort in Mexico City, 2009 to 2014. Repeated measures of dietary intake and mother's weight were obtained during pregnancy. Individual GWG trajectories were modeled in a multilevel regression framework. Associations between MDQS (low, medium, and high adherence) and GWG were investigated using mixed-effect regression models with linear splines. RESULTS: Women with prepregnancy BMI of ≥30 kg/m2 had a slower rate of GWG (RGWG) compared with other categories. A higher adherence to MDQS was protective against an insufficient (odds ratio [OR], 0.63; 95% confidence interval [CI], 0.42-0.95; P = 0.03) and an excessive RGWG (OR, 0.62; 95% CI, 0.41-0.94; P = 0.03) throughout pregnancy, adjusting for prepregnancy BMI, energy intake, maternal age, educational level, parity, fetal sex, marital status, and physical activity. Associations between diet and RGWG differed by gestational period. CONCLUSION: A better quality diet, as measured by MDQS, was associated with appropriate GWG during pregnancy in the PRINCESA cohort.


Subject(s)
Body-Weight Trajectory , Diet, Healthy/statistics & numerical data , Gestational Weight Gain , Adult , Body Mass Index , Cohort Studies , Diet/adverse effects , Female , Humans , Mexico , Odds Ratio , Overweight/etiology , Pregnancy , Pregnancy Complications/etiology , Young Adult
17.
Article in English | MEDLINE | ID: mdl-30745893

ABSTRACT

[This corrects the article DOI: 10.3389/fendo.2017.00306.].

18.
Article in English | MEDLINE | ID: mdl-29163373

ABSTRACT

Maternal obesity during pregnancy is rising and is associated with increased risk of developing gestational diabetes mellitus (GDM), defined as glucose intolerance first diagnosed in pregnancy (1). Fetal growth is determined by the maternal nutrient supply and placental nutrient transfer capacity. GDM-complicated pregnancies are more likely to be complicated by fetal overgrowth or excess adipose deposition in utero. Infants born from GDM mothers have an increased risk of developing cardiovascular and metabolic disorders later in life. Diverse factors, such as ethnicity, age, fetal sex, clinical treatment for glycemic control, gestational weight gain, and body mass index among others, represent a challenge for studying underlying mechanisms in GDM subjects. Determining the individual roles of glucose intolerance, obesity, and other factors on placental function and fetal growth remains a challenge. This review provides an overview of changes in placental macronutrient transport observed in human pregnancies complicated by GDM. Improved knowledge and understanding of the alterations in placenta function that lead to pathological fetal growth will allow for development of new therapeutic interventions and treatments to improve pregnancy outcomes and lifelong health for the mother and her children.

19.
PLoS One ; 10(12): e0145366, 2015.
Article in English | MEDLINE | ID: mdl-26713439

ABSTRACT

BACKGROUND: The activity of matrix degrading enzymes plays a leading role in the rupture of the fetal membranes under normal and pathological human labor, and matrix metalloproteinase-9 (MMP-9) it is considered a biomarker of this event. To gain further insight into local MMP-9 origin and activation, in this study we analyzed the contribution of human placental leukocytes to MMP-9 secretion and explored the local mechanisms of the pro-enzyme activation. METHODS: Placental blood leukocytes were obtained from women at term gestation without labor and maintained in culture up to 72 h. MMP-9 activity in the culture supernatants was determined by zymography and using a specific substrate. The presence of a potential pro-MMP-9 activator in the culture supernatants was monitored using a recombinant biotin-labeled human pro-MMP-9. To characterize the endogenous pro-MMP-9 activator, MMP-1, -3, -7 and -9 were measured by multiplex assay in the supernatants, and an inhibition assay of MMP-9 activation was performed using an anti-human MMP-3 and a specific MMP-3 inhibitor. Finally, production of MMP-9 and MMP-3 in placental leukocytes obtained from term pregnancies with and without labor was assessed by immunofluorescence. RESULTS: Placental leukocytes spontaneously secreted pro-MMP-9 after 24 h of culture, increasing significantly at 48 h (P≤0.05), when the active form of MMP-9 was detected. Culture supernatants activated the recombinant pro-MMP-9 showing that placental leukocytes secrete the activator. A significant increase in MMP-3 secretion by placental leukocytes was observed since 48 h in culture (P≤0.05) and up to 72 h (P≤0.001), when concentration reached its maximum value. Specific activity of MMP-9 decreased significantly (P≤0.005) when an anti-MMP-3 antibody or a specific MMP-3 inhibitor were added to the culture media. Placental leukocytes from term labor produced more MMP-9 and MMP-3 compared to term non-labor cells. CONCLUSIONS: In this work we confirm that placental leukocytes from human term pregnancies are able to secrete large amounts of MMP-9, and that the production of the enzyme it is enhanced by labor. We also demonstrate for the first time that endogenous MMP-3 plays a major role in MMP-9 activation process. These findings support the contribution of placental leukocytes to create the collagenolytic microenvironment that induces the rupture of the fetal membranes during human labor.


Subject(s)
Labor, Obstetric/blood , Labor, Obstetric/metabolism , Leukocytes/metabolism , Matrix Metalloproteinase 3/metabolism , Matrix Metalloproteinase 9/metabolism , Placenta/cytology , Cell Survival , Collagen/metabolism , Enzyme Activation , Enzyme Precursors/metabolism , Female , Humans , Leukocytes/cytology , Leukocytes/enzymology , Pregnancy
20.
Med Hypotheses ; 82(2): 219-24, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24382337

ABSTRACT

Preterm birth is a public health issue of global significance, which may result in mortality during the perinatal period or may lead to major health and financial consequences due to lifelong impacts. Even though several risk factors for preterm birth have been identified, prevention efforts have failed to halt the increasing rates of preterm birth. Epidemiological studies have identified air pollution as an emerging potential risk factor for preterm birth. However, many studies were limited by study design and inadequate exposure assessment. Due to the ubiquitous nature of ambient air pollution and the potential public health significance of any role in causing preterm birth, a novel focus investigating possible causal mechanisms influenced by air pollution is therefore a global health priority. We hypothesize that air pollution may act together with other biological factors to induce systemic inflammation and influence the duration of pregnancy. Evaluation and testing of this hypothesis is currently being conducted in a prospective cohort study in Mexico City and will provide an understanding of the pathways that mediate the effects of air pollution on preterm birth. The important public health implication is that crucial steps in this mechanistic pathway can potentially be acted on early in pregnancy to reduce the risk of preterm birth.


Subject(s)
Air Pollutants/analysis , Air Pollution/adverse effects , Maternal Exposure/adverse effects , Pregnancy Complications/diagnosis , Cytokines/metabolism , Diet , Female , Humans , Inflammation/complications , Mexico , Models, Theoretical , Obesity/complications , Obstetric Labor, Premature/etiology , Oxidative Stress , Particulate Matter , Pregnancy , Premature Birth , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...